Por favor utiliza este link para citar o compartir este documento: http://repositoriodigital.academica.mx/jspui/handle/987654321/86254
Título: A novel set of reduced equations to model perfect layer matched (PML) in FDTD
Palabras clave: Maxwell equations
FDTD
PML
absorbing boundary conditions
electromagnetic propagation
Fecha de publicación: 31-Jul-2012
Editorial: Revista mexicana de física E
Descripción: We propose a new set of reduced equations describing the Perfectly Matched Layer (PML) boundary condition for the Finite Difference Time Domain Method (FDTD) algorithm. These expressions take into account the main properties of the electromagnetic wave propagation in continuos medias: absorbing, free space and conductive, simplifying the solution of electromagnetic problems as such as the FDTD lattice. A two-dimensional (2-D) transversal electric TE mode Gaussian pulse propagating along free-space is presented as a vehicle of study. The efficiency of this model is validated by a new way to compute the power reflection coefficient of the electromagnetic field arriving at the PML interface at several points. Also a detailed description of the rounding up process to obtain integer values for FDTD equations indexes is discussed.
Other Identifiers: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-35422011000100005
Aparece en las Colecciones:Revista Mexicana de Física E

Archivos de este documento:
No hay archivos asociados a este documento.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.