Por favor utiliza este link para citar o compartir este documento: http://repositoriodigital.academica.mx/jspui/handle/987654321/86222
Título: Quantum confinement particle in a 2D quadrupole potential
Palabras clave: Quadrupolar potential
quantum confinement
Fecha de publicación: 31-Jul-2012
Editorial: Revista mexicana de física E
Descripción: We analytically solve the Hamiltonian for a quantum particle confined in a cylindrical hard-wall well, subject to the action of a two-dimensional quadrupolar potential at the well center. The angular part of the wavefunction is expressed by Mathieu functions whose angular eigenenergies take negative values when the quadrupolar momentum is above a certain threshold. We show that in this case, the radial part of the eigenfunctions is expressed in terms of Bessel functions of an imaginary order which are imaginary-value functions whose phases are not well defined at the origin. However, the density of probability is well defined everywhere and the wave function satisfies hard-wall boundary conditions for any value of the parameters involved. We discuss an alternative criterion for determining the eigenenergies of the system based on the expected value of the symmetrized radial momentum.
Other Identifiers: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-35422010000100001
Aparece en las Colecciones:Revista Mexicana de Física E

Archivos de este documento:
No hay archivos asociados a este documento.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.