Por favor utiliza este link para citar o compartir este documento: http://repositoriodigital.academica.mx/jspui/handle/987654321/86206
Título: Generalized treatment for diffusion waves
Palabras clave: Diffusion
periodical sources
dispersion equation
Fecha de publicación: 31-Jul-2012
Editorial: Revista mexicana de física E
Descripción: Intended for teaching purposes, the phenomenon of diffusion in the presence of periodical sources is described, taking into account a characteristic operator, <img border=0 src="../../../../../img/revistas/rmfe/v55n1/a11s1.jpg">(t), leading to a generalized hyperbolic equation. The essential features of the accompanying harmonic flux are presented. For this purpose the solution to the problem is interpreted in terms of diffusion waves, a peculiar class of waves with complex wave numbers whose generation, propagation and detection constitute the basis of modern analytical techniques able to measure optical and transport properties of materials in the condensed or gaseous phase. A generalized mathematical equation describing this kind of waves is shown and the existence of critical modulation frequencies, at which the diffusive fluxes change their behaviour, is demonstrated for different physical phenomena involving diffusion waves. The dispersion equation for diffusion waves is given, and different particular cases in modulation frequency "spectrum" are discussed.
Other Identifiers: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-35422009000100011
Aparece en las Colecciones:Revista Mexicana de Física E

Archivos de este documento:
No hay archivos asociados a este documento.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.