Por favor utiliza este link para citar o compartir este documento: http://repositoriodigital.academica.mx/jspui/handle/987654321/86184
Título: n-order perturbative solution of the inhomogeneous wave equation
Palabras clave: Inhomogeneous media
perturbation theory
wave propagation
Fecha de publicación: 31-Jul-2012
Editorial: Revista mexicana de física E
Descripción: The exact solution of the inhomogeneous wave equation in one dimension, when the square of the velocity is a linear function of the position, can be written in terms of Bessel functions of the first kind. We use this solution as the zero order approximation for a perturbation expansion and apply it to the case when the square of the velocity can be written as a polynomial in the position. The first and second order perturbation terms, corresponding to quadratic and cubic terms for the square of the velocity, are obtained. A closed formula for the n-order correction in terms of integrals of the Bessel functions of the first kind was also explicitly obtained, this expression can be solved analytically for the first and second order corrections and numerically for higher terms
Other Identifiers: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-35422008000200009
Aparece en las Colecciones:Revista Mexicana de Física E

Archivos de este documento:
No hay archivos asociados a este documento.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.