Por favor utiliza este link para citar o compartir este documento: http://repositoriodigital.academica.mx/jspui/handle/987654321/13079
Título: Comparison of methodologies for mapping land use cover in Southeast Mexico
Comparación de metodologías para el mapeo de la cobertura y uso del suelo en el sureste de México
Autores: 
Palabras clave: Clasificación contextual; redes neurales; datos auxiliares
Contextual classification; neural networks; ancillary data
Fecha de publicación: 13-Sep-2011
Editorial: Instituto de Geografía de la UNAM
Descripción: La clasificación digital de imágenes de satélite se ha convertido en una herramienta indispensable para monitorear la cobertura terrestre. Debido a los errores que se observan a menudo en los mapas derivados del análisis de datos de percepción remota, existe una búsqueda constante por desarrollar y probar alternativas que permitan la obtención de resultados precisos para la toma de decisiones. En la literatura se mencionan varios métodos para obtener mejores resultados que una clasificación convencional (clasificación píxel a píxel por el método de máxima probabilidad). En este trabajo se comparan diferentes métodos alternativos para clasificar una imagen Landsat de una región del sureste de México (clasificación contextual, clasificación por redes neurales, incorporación de datos auxiliares). Los resultados obtenidos muestran que la incorporación de datos auxiliares representados por imágenes de probabilidad a priori permite aumentar hasta un 20 % la fiabilidad en comparación con una clasificación convencional, superando incluso los resultados obtenidos con métodos no paramétricos y contextuales.
Digital classification of satellite images has become an important tool for land use cover monitoring. There have been many studies and researches aiming to develop and assess classification methods which are capable of producing results with higher accuracies in order to support decision making. Through a literature review, we found various classification methods that have been tested and are able to produce better results than the conventional one. This work compares different classification methods in a southeast region of Mexico. Results show that with ancillary data which were represented by prior probabilities, the classifications obtained 20 % more accuracy that those by conventional classification methods, and even better than those methods using non-parametric classifier and contextual information.
Other Identifiers: http://revistas.unam.mx/index.php/rig/article/view/17987
Aparece en las Colecciones:Investigaciones Geográficas

Archivos de este documento:
No hay archivos asociados a este documento.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.