Por favor utiliza este link para citar o compartir este documento: http://repositoriodigital.academica.mx/jspui/handle/987654321/106715
Título: Simulation of exact barotropic vorticity equation solutions using a spectral model
Simulation of exact barotropic vorticity equation solutions using a spectral model
Autores: 
Palabras clave: 
Fecha de publicación: 4-Oct-2012
Editorial: Centro de Ciencias de la Atmósfera
Descripción: SE USA UN MODELO ESPECTRAL NUMÉRICO DE LA ATMOSFERA BAROTROPICA CON EL FIN DE SIMULAR SOLUCIONES EXACTAS BIEN CONOCIDAS DE LA ECUACIÓN DE VORTICIDAD PARA UN FLUIDO IDEAL INCOMPRENSIBLE SOBRE UNA ESFERA EN ROTACIÓN. SE ENFATIZA EN ESTUDIA EL COMPORTAMIENTO DEL ERROR RELATIVO ENTRE LA SOLUCIÓN EXACTA Y LA SOLUCIÓN NUMÉRICA, Y EN PRESERVAR LA ENERGÍA CINÉTICA TOTAL, LA EXTROFIA INTEGRAL Y LA ESTRUCTURA GEOMÉTRICA DE LA SOLUCIONES (FLUJOS ZONALES, ONDAS DE ROSSBY-HAURWITZ, SOLUCIONES DE WU-VERKLEY, Y MODONES BIOPOLARES DE VERKLEY). LAS INTEGRACIONES REALIZADAS CON EL MODELO EN UN INTERVALO DE 10 DÍAS, MUESTRAN QUE LAS SOLUCIONES EXACTAS CLÁSICAS SE REPRODUCEN CON BUENA PRECISIÓN. SIN EMBARGO, LA INESTABILIDAD DE UNAS SOLUCIONES EXACTAS GENERALIZADAS RESPECTO A LOS ERRORES INICIALES Y LOS ERRORES ASOCIADOS AL FORZAMIENTO NUMÉRICO PUEDE SER UN SERIO OBSTÁCULO EN SIMULAR EL COMPORTAMIENTO DE DICHAS SOLUCIONES A LARGO PLAZO. SI ESTE ES EL CASO ENTONCES AUN EL MODELO ESPECTRAL DE ALTO ORDEN DE TRUNCACIÓN CON MUY PEQUEÑO PASO TEMPORAL FALTA EN RESOLVER EL PROBLEMA, Y LAS TRAYECTORIAS DE LAS SOLUCIONES NUMÉRICAS Y EXACTAS DIVERGEN DE UNA A OTRA EN EL TIEMPO. POR OTRA PARTE, LA ENERGÍA TOTAL Y LA EXTROFIA INTEGRAL DE TODAS LAS SOLUCIONES CALCULADAS NUMÉRICAMENTE SE CONSERVAN CON UN ALTO GRADO DE PRECISIÓN POR LO MENOS DURANTE LOS PRIMERO DIEZ DÍAS.
A numerical spectral model of the barotropic atmosphere is used to simulate well-known exact solutions of the vorticity equation for an ideal incompressible fluid on a rotating sphere. Primary emphasis is received to the behavior of the relative error between the exact and numerical solutions as well as to preserving the total kinetic energy, integral enstrophy, and geometric structure of the solutions (zonal flows, Rossby-Haurwitz waves, Wu-Verkley solutions, and Verkley's dipole modons). The 10-day integrations carried out with the model show that the classical exact solutions (RH waves) can be calculated to a good approximation. However, the instability of some exact generalized solutions with respect to initial errors and the errors associated with nonzero numerical model forcing can be a serious obstacle in simulating long-time behavior of such solutions. If it is the case then even highly truncated model with very small time step fails to resolve the problem, and the paths of the numerical and exact solutions diverge from each other with time. Nevertheless, the total energy and integral enstrophy of all the numerical solutions are conserved with a high degree of precision at least during first 10 days.
Other Identifiers: http://revistas.unam.mx/index.php/atm/article/view/8450
Aparece en las Colecciones:Atmosfera

Archivos de este documento:
No hay archivos asociados a este documento.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.